
Hands On AGK BASIC: Iteration 123

In this Chapter:

T while..endwhile Structure

T repeat..until Structure

T for..next Structure

T do..loop Structure

T Validating Input

T The exit Statement

T Testing Loop Structures

Iteration

124 Hands On AGK BASIC: Iteration

Iteration

Introduction
Iteration is the term used when one or more statements are carried out repeatedly. As
we saw in Chapter 1, structured English has three distinct iterative structures: FOR ..
ENDFOR, REPEAT .. UNTIL and WHILE .. ENDWHILE.

AGK BASIC, on the other hand, has four iterative structures. One of these takes the
same form as their structured English equivalent, but others differ slightly and
therefore care should be taken when translating structured English statements to
AGK BASIC.

The while..endwhile Construct
The while statement is probably the easiest of AGK BASIC’s loop structures to
understand, since it is identical in operation and syntax to the WHILE loop in
structured English.

This structure allows us to continually execute a section of code as long as a specified
condition is being met. For example, if, in a game, a player’s character sustains
damage of 10 points while he stands on a “bad health” area, this can be described in
structured English as

 WHILE player on “bad health” area DO
 Reduce player’s health by 10
 ENDWHILE

which can be coded in AGK BASIC as:

	while	floor_area	=	25
		 health	=	health	-	10
 endwhile

The syntax of AGK BASIC’s while .. endwhile construct is shown in FIG-5.1.

where:

 condition is a Boolean expression and may include and,	or,	not	
 and parentheses as required.

 statement is any valid AGK BASIC statement.

while..endwhile is an entry-controlled loop. That is, the condition at the start of
the loop is tested and only if that condition is true, are the statements within the loop
executed. When the endwhile term is reached, control returns to the while line and
the condition is retested. If the condition is found to be false, then looping stops with
an immediate jump from the while line to the endwhile line, skipping the statements
in between.

FIG-5.1

while..endwhile

AGK BASIC’s
while statement
does not use the
term do.

while condition

statement

endwhile

The code assumes a
variable called floor_
area records the position
of the character and that
the “bad health” area is
at position 25.

Hands On AGK BASIC: Iteration 125

A visual representation of how this loop operates is shown in FIG-5.2.

Note that the loop body may never be executed if condition is false when first tested.

A common use for this loop statement is validation of input. So, for example, in our
number guessing game, we might ensure that the user types in a value between 0 and
9 when entering their guess by using the logic

 Get guess
 WHILE guess outside the range 0 to 9 DO
 Display error message
 Get guess
 ENDWHILE

which can be coded in AGK BASIC using our GetButtonEntry() function as:

	Print(“Enter	your	guess	(0	-	9)	:	”)
	Sync()
	Sleep(2000)
	guess	=	GetButtonEntry()
	while	guess	<	0	or	guess	>	9
		 Print(“Your	guess	must	be	between	0	and	9”)
		 Print(“Enter	your	guess	again(0	-	9)	:	”)
		 Sync()
		 Sleep(2000)
		 guess	=	GetButtonEntry()
 endwhile

FIG-5.2

How while..
endwhile Operates

Earlier Statements

Later Statements

1
 is testedcondition

2 - option 1
if is true,

the loop body statements
are executed

condition

After the loop body
has been executed, the program

returns to the start of the loop
and is retested condition

2 - option 2
if is false,

the program jumps to the
end of the loop

condition

...

while condition

statements

endwhile

The test guess	<	0 is not
required since the function
GetButtonEntry() does
not allow negative values
to be entered. However,
the condition has been
included so that, should
GetButtonEntry()	ever be
modified to allow entry of
negative values, the while
loop will catch any values
less than zero.

126 Hands On AGK BASIC: Iteration

The repeat..until Construct
Like structured English, AGK BASIC has a repeat..until statement. The two
structures are identical. Hence, if in structured English we write

 Set total to zero
 REPEAT
 Get a number
 Add number to total
 UNTIL number is zero

then the same logic would be coded in AGK BASIC as

	total	=	0
	repeat
		 number	=	GetButtonEntry()
		 total	=	total	+	number
	until	number	=	0

The repeat..until statement is an exit-controlled loop structure. That is, the action
within the loop is executed and then an exit condition is tested. If that condition is
found to be true, then looping stops, otherwise the statements specified within the
loop are executed again. Iteration continues until the exit condition is true.
The syntax of the REPEAT statement is shown in FIG-5.3.

The code assumes
we are using the
Button routines
introduced in the
previous chapter to
accept input.

FIG-5.3

repeat..until

repeat

condition

statement

until

Activity 5.1

Modify your Dice project to incorporate the code given above. Check that the
program works correctly by attempting to make guesses which are outside the
range 0 to 9. Resave your project.

Activity 5.2

A simple dice game involves counting how many times in a row a pair of dice
can be thrown to produce a value of 8 or less. The game stops as soon as a
value greater than 8 is thrown.

Create a new project, DiceCount, which implements the following logic:

 Set count to zero
 Throw the two dice
 Display dice values
 WHILE the sum of the two dice <= 8 DO
 Add 1 to count
 Throw the two dice
 Display dice values
 ENDWHILE
 Display “You had a run of “ , count, “throws”

Test and save your program.

Hands On AGK BASIC: Iteration 127

where:

 condition is a Boolean expression and may include and, or, not and
 parentheses as required.

 statement is any valid AGK BASIC statement.

The operation of the repeat	..	until construct is shown graphically in FIG-5.4.

Earlier Statements

Later Statements

2
 is testedcondition

repeat

condition

statements

until

1
Statements

in the loop body
are executed

3 - option 1
condition true:

exit loop3 - option 2
condition false:
return to start

of loop

FIG-5.4

How repeat..until
Operates

Activity 5.3

Create a new project, Total, to read in a series of integer values, stopping only
when a zero is entered. The values entered should be totalled and that total
displayed at the end of the program. Use the Buttons routines to accept input.

Use the following logic:

 Set total to zero
 REPEAT
 Get a number
 Add number to total
 UNTIL number is zero
 Display total

Test and save your project.

128 Hands On AGK BASIC: Iteration

The for..next Construct
In structured English, the FOR loop is used to perform an action a specific number
of times. For example, we might describe dealing seven cards to a player using the
logic:

 FOR 7 times DO
 Deal card
 ENDFOR

Sometimes the number of times the action is to be carried out is less explicit. For
example, if each player in a game is to pay a £10 fine, we could write:

 FOR each player DO
	 	 Pay	£10	fine
 ENDFOR

However, in both examples, the action specified between the FOR and ENDFOR
terms will be executed a known number of times.

In AGK BASIC the for construct makes use of a variable to keep a count of how
often the loop is executed and the first line of the structure takes the form:

	for	variable	=	start_value	to	finish_value

Hence, if we want a for loop to iterate 7 times we would write

	for	c	=	1	to	7

In this case c would be assigned the value 1 when the for loop is about to start. Each
time the statements within the loop are completed, c will be incremented, and
eventually, when c is equal to 7 and the loop body has been executed, iteration stops.

The variable used in a for loop is known as the loop counter.

While structured English marks the end of a FOR loop using the term ENDFOR, in
AGK BASIC the end of the loop is indicated by the term next followed by the name
of the loop counter variable used in the for statement. For example, the code

	for	k	=	1	to	10
		 Print(“*”)
	next	k
	Sync()

Activity 5.5

Write the first line of a for loop that is to be executed 10 times, using a
variable j as the loop counter. The starting value of j should be 1.

Activity 5.4

Modify Dice to allow the player to keep guessing until the correct number is
arrived at.

Test and save your project.

Hands On AGK BASIC: Iteration 129

contains a single statement within the loop body and will display a column of 10
asterisks.

The loop counter in a for loop can be made to start and finish at any value, so it is
quite valid to start a loop with the line:

	for	m	=	3	to	12

The loop counter m will contain the value 3 when the loop is first executed and 12
when the final execution is complete. The loop will be executed exactly 10 times.

If the start and finish values are identical, as in the line

	for	r	=	10	to	10

 then the loop is executed once only.

Where the start value is greater than the finish value, the loop will not be executed at
all so the code within the loop body will be ignored. Such a result would be produced
from the line

	for	k	=	10	to	9

Normally, 1 is added to the loop counter each time the loop body is performed.
However, we can change this by adding a step value to the for loop as in the example
shown below:

	for	c	=	2	to	10	step	2

In this last example the loop counter, c, will start at 2 and then increment to 4 on the
next iteration. The program in FIG-5.5 uses the step option to display the 7 times
table from 1 x 7 to 12 x 7.

Activity 5.6

What would be displayed by the code

 for	p	=	1	to	10
	 	 Print(p)
	 next	p
	 Sync()

FIG-5.5

7 Times Table

rem	***	7	Times	Table	***

rem	***	Display	title	***
Print(“7	Times	Table”)
Print(“”)
rem	***	Display	the	table	values	***
for	c	=	7	to	84	step	7
				Print(c)
next	c
Sync()
do
loop

130 Hands On AGK BASIC: Iteration

By using the step keyword with a negative value, it is even possible to create a for
loop that reduces the loop counter on each iteration as in the line:

	for	d	=	10	to	0	step	-1

This last example causes the loop counter to start at 10 and finish at 0.

It is possible that the step value given may cause the loop counter never to match the
finish value. For example, in the line

	for	c	=	1	to	12	step	5

the variable c will take on the values 1, 6, and 11. The loop body will not be executed
when the loop counter passes the finishing value (12, in this case) and the looping
will stop.

The start, finish and even step values of a for loop can be defined using a variable or
arithmetic expression, as well as a constant. For example, in FIG-5.6 below the user
is allowed to enter the upper limit of the for loop.

The program will display every integer value between 1 and the number entered by
the user. If this involves many numbers being displayed, there will not be space
within the app window to show them all at the same time. Therefore, the program
displays one number at a time with 0.2 secs delay between each value.

Activity 5.8

Modify Tables so that the 12 times table is displayed with the highest value
first. That is, starting with 144 and finishing with 12.

FIG-5.6

Using a Variable in a
for..next Statement

#include	“Buttons.agc”

SetUpButtons()
rem	***	Get	a	number	***
Print(“Enter	upper	limit”)
Sync()
Sleep(2000)
num	=	GetButtonEnrty()
rem	***	Display	values	between	1	and	num	***
for	c	=	1	to	num
	 Print(c)
	 Sync()
	 Sleep(200)
next	c
do
loop

Activity 5.7

Start a new project, Tables, that implements the code shown in FIG-5.5.

Test the program.

Modify the program so that it displays the 12 times table from 1 x 12 to 12 x
12.

Hands On AGK BASIC: Iteration 131

The for loop counter can also be specified as a real value with a step value which is
not a whole number. For example:

	for	ch#	=	1.0	to	2.0	step	0.1
		 Print(ch#)	
	next	ch#
 Sync()

Notice that most of the values displayed by the last Activity are slightly out. For
example, instead of the second value displayed being 1.1, it displays as 1.10000002384.

This difference is caused by rounding errors when converting from the decimal
values that we use to the binary values favoured by the computer.

Although we might have expected the for loop to perform 11 times (1.0,1.1,1.2, etc.
to 2.0), in fact, it only performs 10 times up to 1.90000021458. Again, this discrepancy
is caused by the rounding error problem.

The format of the for..next construct is shown in FIG-5.7.

where:

 variable is either an integer or real variable. Both variable tiles in the
 diagram refer to the same variable. Hence, the name used after

Activity 5.10

Create a project, ForReal, which includes the code given above and check out
the result.

 Ë The latest version
of AGK no longer
displays values to 11
decimal places; only
6, so the rounding
errors are no longer
visible but still occur
internally.

Activity 5.11

Modify ForReal so that the upper limit of the loop is 2.01.

How many times is the iteration performed now?

FIG-5.7

for..next

for variable value1

next

= to value2 []step value3

statement

variable

Activity 5.9

Start a new project, OneTo, containing the code given in FIG-5.6. (Remember
you have to include the three Buttons files in your project folder).

Modify the program so that the user may also specify the starting value of the
for loop.

Change the program a second time so that the user can specify a step size for
the for loop.

Test each version of the program.

132 Hands On AGK BASIC: Iteration

 the keywords for and next must be the same. This
 variable is known as the loop counter.

 value1 is the initial value of the loop counter. The loop counter
 will contain this value the first time the statements within
 the loop are executed.

 value2 is the final value of the loop variable. The loop variable
 will usually contain this value the last time the loop body
 is executed.

 value3 is the value to be added to the loop counter after each
 iteration. If this is omitted then a value of 1 is added
 to the loop counter.

 statement is any valid AKG BASIC statement.

The operation of the for..next statement is shown graphically in FIG-5.8.

FIG-5.8

How for..next
Operates

for variable value1

next

= to value2 []step value3

statement

variable

1
value1 is copied

to variable

2
variable compared

to value2

3 (option 2)
(variable not

passed value2)

Loop statements
executed

3 (option 1)
(variable passed

 value2)

Loop exits

4
value3 added

to variable

(if value3 omitted,
1 added to variable)

Activity 5.12

Create a new project, InTotal, which reads in and displays the total of 6
numbers. Make use of the Buttons files for input.

Test and save your project.

Hands On AGK BASIC: Iteration 133

Finding the Smallest Value in a List of Values
There are several tasks that will crop up over and over again in your programs. One
of these is finding the smallest value in a list of numbers. This is a trivial enough task
for our own brains as long as the list is short enough to be taken in at a glance, but if
asked how you managed to come up with the correct answer, you might struggle to
give a verbal description of the strategy you used.

Now, let’s imagine you wanted to record the coldest temperature achieved in your
area during the current year. Since this involves a longer list of data which also takes
a full year to access, you would have to come up with an organised way of getting
the information you want. Perhaps you would write down the lowest temperature on
January 1st and then check each day to see if a lower temperature has been achieved.
When a lower temperature does occur, you can erase the previous record and write
down this new temperature. By the end of the year your record would show the
lowest temperature achieved during the year.

This is exactly how we tackle the same type of problem in a computer program. We
set up one variable to hold the smallest value we’ve come across so far and if a later
value is smaller, it is copied into this variable. The algorithm used is given below and
assumes 7 numbers will be entered in total:

	 Get	first	number
	 Set	smallest	to	first	number	
 FOR 6 times DO
 Get next number
 IF number < smallest THEN
 Set smallest to number
 ENDIF
 ENDFOR
 Display smallest

Activity 5.14

Create a new project called Smallest.

In this program implement the logic shown above to display the smallest of 5
integer values entered.

Modify the program to find the largest, rather than the smallest, of the numbers
entered. Save your project.

Activity 5.13

Start a new project called Shades.

Code a program which uses a for loop with a start value of 0 and finish of 255.

Inside the loop, execute a SetClearColor() statement and use the value of
the loop counter as the red parameter to the statement. The green and blue
parameter values for the SetClearColor() statement should both be zero.

Add a delay (using Sleep()) of 20 milliseconds between each iteration of the
loop.

Test and save your project.

134 Hands On AGK BASIC: Iteration

The exit Statement
The exit statement is used to terminate the loop currently being executed. The next
statement to be executed after an exit command is the statement immediately after
the end of the loop. The exit statement takes the form shown in FIG-5.9.

Normally, the exit statement will appear within an if statement.

Let’s look at an example where the exit statement might come in useful. In a dice
game we are allowed to throw a pair of dice 5 times and our score is the total of the
five throws. However, if during our throws we throw a 1, then, according to the rules
of the game, our turn ends and our final score becomes the total achieved up to that
point (excluding the throw containing a 1). We could code this game as shown in
FIG-5.10.

FIG-5.9

The exit Statement exit

FIG-5.10

Using exit

rem	***	set	total	to	zero	***
total	=	0
rem	***	for	5	times	do	***
for	c	=	1	to	5
	 	 rem	***	Display	roll	number	***
	 	 PrintC(“Roll	number	“)
	 	 Print(c)
	 	 Sync()
	 	 Sleep(1000)
	 	 rem	***	throw	both	dice	***
	 	 dice1	=	Random(1,6)
	 	 dice2	=	Random(1,6)
	 	 rem	***	display	throw	number	and	dice	values	***
	 	 PrintC(“dice	1	:	“)
	 	 PrintC(dice1)
	 	 PrintC(”										dice	2	:	“)
	 	 Print(dice2)
	 	 Sync()
	 	 Sleep(4000)
	 	 rem	***	if	either	dice	is	a	1	then	quit	loop	***
	 	 if	dice1	=	1	or	dice2	=	1
	 	 	 exit
 endif
	 	 rem	***	add	dice	throws	to	total	***
	 	 total	=	total	+	dicel	+	dice2
	 next	c
	 rem	***	display	final	score	***
	 PrintC(“your	final	score	was	:	”)
	 Print(total)
	 Sync()
	 do
	 loop

Activity 5.15

Create a new project call SumDice. Delete the existing code in main.agc and
enter the program given in FIG-5.10.

Run the program and check that the loop exits if a 1 is thrown.

Modify the program to exit only if both dice show a 1.

Hands On AGK BASIC: Iteration 135

The do .. loop Construct
The do..loop construct is a rather strange loop structure, since, while other loops are
designed to terminate eventually, the do	..	loop structure will continue to repeat the
code within its loop body indefinitely.

The default code that exists when we begin a new project makes use of this loop
structure to continually display the words Hello world - the traditional text for a first
program.

When a do loop is executing, then, under normal circumstances, the program will
only terminate when forced to do so by an external event. In all our projects so far,
the external event has been the operating system closing down our program in
response to our clicking on the X button at the top-right of the app window.
Alternatively, an exit statement can be included within the loop to allow the loop to
be exited when a given condition occurs.

As we write more complex programs you will begin to understand why a do loop is
so often needed to get the game to run smoothly.

The do..loop structure takes the format shown in FIG-5.11.

Nested Loops
A common requirement within a program is to place one loop control structure within
another. This is known as nested loops. For example, to input six game scores (each
between 0 and 100) and then calculate their average, the logic required is:

 1. Set total to zero
 2. FOR 6 times DO
 3. Get valid score
 4. Add score to total
 5. ENDFOR
 6. Calculate average as total / 6
 7. Display average

This appears to have only a single loop structure beginning at statement 2 and ending
at statement 5. However, if we add detail to statement 3, this gives us

 3. Get valid score
 3.1 Read score
 3.2 WHILE score is invalid DO
 3.3 Display “Score must be between 0 to 100”
 3.4 Read score
 3.5 ENDWHILE

which, if placed in the original solution, results in a nested loop structure, where a
while loop appears inside a for loop:

 1. Set total to zero
 2. FOR 6 times DO
 3.1 Read score

FIG-5.11

do..loop

do

statement

loop

136 Hands On AGK BASIC: Iteration

 3.2 WHILE score is invalid DO
 3.3 Display “Score must be between 0 to 100”
 3.4 Read score
 3.5 ENDWHILE
 4. Add score to total
 5. ENDFOR
 6. Calculate average as total / 6
 7. Display average

s

Nested for Loops
A very common example of nested loops are nested for loops. And, although
someone new to programming can sometimes have difficulties with the concept, its
actually easy enough to see real world examples of how nested for loops work.

Next time you are out in the car, have a look at the odometer (that’s the one that tells
you how many miles/kilometres the car has done). Now, look at the right two digits
of the odometer. As you travel along you’ll see the far right hand digit move slowly
until it reaches 9; at that point it returns to zero and the digit to its left increments
before the whole process repeats itself. You’ll see the same sort of thing on a digital
clock.

The code in FIG-5.12 emulates those last two digits on the odometer. Initially, they
are set to 00 and then move onto 01, 02 ... 09,10,11, etc

The tens loop is known as the outer loop, while the units loop is known as the inner
loop.

A few points to note about nested for loops:

± The inner loop increments fastest.

± Only when the inner loop is complete does the outer loop variable increment.

± The inner loop counter is reset to its starting value each time the outer loop
counter is incremented.

Activity 5.16

Turn the above algorithm into an AKG BASIC project, AverageScore, using
the Buttons files to allow input.

Run and test the program, making sure it operates as expected.

FIG-5.12

Nested for loops Rem	***	Nested	for	loop	***

for	tens	=	0	to	9
				for	units	=	0	to	9
								PrintC(tens)
								PrintC(“	“)
								Print(units)
								Sync()
								Sleep(200)
				next	units
next	tens
do
loop

Hands On AGK BASIC: Iteration 137

Testing Iterative Code
We need a test strategy when looking for errors in iterative code. Where possible, it
is best to create at least three sets of values:

± Test data that causes the loop to execute zero times.

± Test data that causes the loop to execute once.

± Test data that causes the loop to execute multiple times.

For example, in Dice we added statements to ensure that the guess entered was in the
range 0 to 9 using the following code:

	guess	=	GetButtonEntry()
	while	guess	<	0	or	guess	>	9
		 Print(“Your	guess	must	be	between	0	and	9”)
		 Print(“Enter	your	guess	again(0	-	9)	:	”)
		 Sync()
		 Sleep(2000)
		 guess	=	GetButtonEntry()
 endwhile

To test the while loop in this code we could use the test data shown in FIG-5.13.

The while loop is only executed if guess is outside the range 0 to 9, so Test 1, which
uses a value inside that range, will skip the while loop body giving zero iterations.

Test 2 starts with an invalid value (10) for guess, causing the while loop body to be
executed, and then uses a valid value (5). This loop is therefore exited after only one
iteration.

FIG-5.13

Test Data

Test No. guess
1

3
2

7
10, 5

18, 12, 3

Activity 5.17

Start a new project, NestedFor, and code the program to match FIG-5.12.
Test and save your project.

Activity 5.18

What would be output by the following code?

 for	no1	=	-2	to	1
	 	 for	no2	=	0	to	3
	 	 	 PrintC(no1)
	 	 	 PrintC(“	“)
	 	 	 Print(no2)
	 	 	 Sync()
	 	 	 Sleep(200)
	 	 next	no2
	 next	no1

138 Hands On AGK BASIC: Iteration

Test 3 uses two invalid values (18 and 12) before entering a valid value (3), causing
the while loop body to execute twice.

There will be cases where using all three tests strategies are not possible. For example,
a repeat loop cannot execute zero times and, in this case, we have to satisfy ourselves
with single and multiple iteration tests.

A for loop, when written for a fixed number of iterations can only be tested for that
number of iterations. So a loop beginning with the line

 for	c	=	1	to	10

can only be tested for multiple iterations (10 iterations, in this case), the exception
being if the loop body contains an exit statement, in which case zero and one
iteration tests may also be possible by supplying values which cause the exit
statement to be terminated during the required iteration.

A for loop which is coded with a variable upper limit as in

	for	c	=	1	to	max

may be fully tested by making sure max has the values 0, 1, and more than 1 during
testing.

Activity 5.19

The following code is meant to calculate the average of a sequence of numbers.
The sequence ends when the value zero is entered. This terminating zero is not
considered to be one of the numbers in the sequence.

 total	=	0
	 count	=	0
	 Print(“Enter	number	(0	to	stop)”)
	 Sync()
	 Sleep(2000)
	 num	=	GetButtonEntry()
	 while	num	<>	0
	 	 total	=	total	+	num
	 	 count	=	count	+	1
	 	 Print(“Enter	number	(0	to	stop)”)
	 	 Sync()
	 	 Sleep(2000)
	 	 num	=	GetButtonEntry()
 endwhile
	 average	=	total	/	count
	 PrintC(“Average	is	“)
	 Print(average)
	 Sync()
	 do
	 loop

Make up a set of test values (similar in construct to FIG-5.13) for the while
loop in the code.

Create a new project, Average, containing the code given above and use the test
data to find out if the code functions correctly.

Hands On AGK BASIC: Iteration 139

A do loop can only be tested for zero and one iterations if it contains an exit statement.

Summary
± AGK BASIC contains four iteration constructs:

 while .. endwhile
		 repeat	..	until
		 for	..	next
		 do	..	loop

± The while..endwhile construct executes a minimum of zero times and exits
when the specified condition is false.

± The repeat..until construct executes at least once and exits when the
specified condition is true.

± The for..next construct is used when iteration has to be done a specific
number of times.

± A step size may be included in the for statement. The value specified by the
step term is added to the loop counter on each iteration.

± If no step size is given in the for statement, a value of 1 is used.

± for loops counters can be integer or real.

± The start, finish and step values in a for loop can be defined using variables or
arithmetic expressions.

± If the start value is equal to the finish value, a for loop will execute only once.

± If the start value is greater than the finish value and the step size is a positive
value, a for loop will execute zero times.

± Using the do..loop structure creates an infinite loop.

± The exit statement can be used to exit from any loop.

± One loop structure can be placed within another loop structure. Such a
structure is known as a nested loop.

± Loops should be tested by creating test data for zero, one and multiple
iterations during execution whenever possible.

140 Hands On AGK BASIC: Iteration

Solutions
Activity 5.1

Modified code for Dice:
rem	***	Dice	program	***
rem	***	Simulates	the	roll	of	a	10-sided	dice	***

rem	***	include	Buttons***
#include	“Buttons.agc”

rem	***	Display	buttons	***
SetUpButtons()
rem	***	Throw	dice	***
dice	=	Random(0,9)
rem	***	Display	prompt	***
Print(“Guess	what	my	number	is	“)
Sync()
Sleep(2000)
rem	***	Get	a	value	***
guess	=	GetButtonEntry()
while	guess	<	0	or	guess	>	9
	 	 Print(“your	guess	must	be	between	0	and	9”)
	 	 Print(“Enter	your	guess	again(0	-	9)	:	“)
	 	 Sync()
	 	 Sleep(2000)
	 	 guess	=	GetButtonEntry()
 endwhile
rem	***	Display	message	***
diff	=	dice	-	guess
if	diff	>	2
				Print(“You	guess	is	too	low”)
else
				if	diff	>	0
								Print(“Your	guess	is	slightly	too	low	“)
				else
								if	diff	=	0
												Print(“Correct”)
								else
												if	guess	>	-2
																Print(“Your	guess	is	slightly	too	
 high”)
												else
																Print(“Your	guess	is	too	high”)
 endif
 endif
 endif
endif
rem	***	Display	values	***
PrintC(“My	number	was	:	“)
Print(dice)
PrintC(“Your	guess	was	:	“)
Print(guess)
Sync()
do
loop

Activity 5.2
Code for DiceCount:

rem	***	Count	dice	run	***

rem	***	Set	count	to	zero	***
count	=	0
rem	***	Throw	dice	***
dice1	=	Random(1,6)
dice2	=	Random(1,6)
rem	***	display	dice	values	***
PrintC(dice1)
PrintC(“	“)
Print(dice2)
Sync()
Sleep(500)
rem	***	Keep	going	while	total	is	less	than	9	***
while	dice1	+	dice2	<=	8
				rem	***	add	1	to	count	***
				count	=	count	+	1
				rem	***	Throw	dice	***
				dice1	=	Random(1,6)
				dice2	=	Random(1,6)
				rem	***	display	dice	values	***
				PrintC(dice1)
				PrintC(“	“)
				Print(dice2)

				Sync()
				Sleep(500)
endwhile
PrintC(“You	had	a	run	of	“)
PrintC(count)
Print(“	throws”)
Sync()
do

loop

Activity 5.3
Set the app window dimensions to 768 wide by 1024 high.

Code for Total:

rem	***	Total	a	sequence	of	numbers	***

rem	***	include	Buttons	routines	***
#include	“Buttons.agc”

rem	***	Set	up	buttons	***
SetUpButtons()
rem	***	Set	total	to	zero	***
total	=	0
rem	***	Keep	going	until	zero	entered	***
repeat
				rem	***	Get	value	***
				no	=	GetButtonEntry()
				rem	***	Add	value	to	total	***
				total	=	total	+	no
until	no	=	0
rem	***	Display	total	***
PrintC(“Total	=	“)
Print(total)
Sync()
do
loop

Activity 5.4
Modified code for Dice (remember to indent all the code
between the repeat and until terms):

rem	***	Dice	program	***
rem	***	Simulates	the	roll	of	a	10-sided	dice	***

rem	***	include	Buttons***
#include	“Buttons.agc”

rem	***	Display	buttons	***
SetUpButtons()
rem	***	Throw	dice	***
dice	=	Random(0,9)
repeat
				rem	***	Display	prompt	***
				Print(“Guess	what	my	number	is	“)
				Sync()
				Sleep(2000)
				rem	***	Get	a	value	***
				guess	=	GetButtonEntry()
				while	guess	<	0	or	guess	>	9
	 	 	 Print(“your	guess	must	be	between	0	and	9”)
	 	 	 Print(“Enter	your	guess	again(0	-	9)	:	“)
	 	 	 Sync()
	 	 	 Sleep(2000)
	 	 	 guess	=	GetButtonEntry()
 endwhile
				rem	***	Display	message	***
				diff	=	dice	-	guess
				if	diff	>	2
								Print(“You	guess	is	too	low”)
				else	if	diff	>	0
								Print(“Your	guess	is	slightly	too	low	“)
				else	if	diff	=	0
								Print(“Correct”)
				else	if	diff	>=	-2
								Print(“Your	guess	is	slightly	too	high”)
				else
								Print(“Your	guess	is	too	high”)
 endif endif endif endif
until	guess	=	dice

rem	***	Display	values	***
PrintC(“My	number	was	:	“)
Print(dice)
PrintC(“Your	guess	was	:	“)

Hands On AGK BASIC: Iteration 141

Print(guess)
Sync()
do
loop

Activity 5.5
for	j	=	1	to	10

Activity 5.6
This code would display the values 1 to 10.

Activity 5.7
Modified code for Tables (12 times table):

rem	***	12	Times	Table	***

rem	***	Display	title	***
Print(“12	Times	Table	“)
Print(“”)
rem	***	Display	the	table	values	***
for	c	=	12	to	144	step	12
				Print(c)
next	c
Sync()
do

loop

Activity 5.8
Modified version of Tables:

rem	***	12	Times	Table	***

rem	***	Display	title	***
Print(“12	Times	Table	“)
Print(“”)
for	c	=	144	to	12	step	-12
				Print(c)
next	c
Sync()
do

loop

Activity 5.9
Code for OneTo:

rem	***	Display	all	values	in	a	range	***

rem	***	include	Buttons	functions	***
#include	“Buttons.agc”

rem	***	Set	up	buttons	***
SetUpButtons()
rem	***	Get	limit	***
Print(“Enter	the	upper	limit”)
Sync()
Sleep(2000)
num	=	GetButtonEntry()
rem	***	Display	numbers	1	to	num	***
for	c	=	1	to	num
				Print(c)
				Sync()
				Sleep(200)
next	c
do
loop

Start value version of OneTo:
rem	***	Display	all	values	in	a	range	***

rem	***	include	Buttons	functions	***
#include	“Buttons.agc”

rem	***	Set	up	buttons	***
SetUpButtons()
rem	***	Get	lower	limit	***
Print(“Enter	the	lower	limit”)
Sync()
Sleep(2000)
start	=	GetButtonEntry()

rem	***	Get	upper	limit	***
Print(“Enter	the	upper	limit”)
Sync()
Sleep(2000)
num	=	GetButtonEntry()
rem	***	Display	numbers	start	to	num	***
for	c	=	start	to	num
				Print(c)
				Sync()
				Sleep(200)
next	c
do
loop

Step size version of OneTo:
rem	***	Display	values	in	a	range	***

rem	***	include	Buttons	functions	***
#include	“Buttons.agc”

rem	***	Set	up	buttons	***
SetUpButtons()
rem	***	Get	lower	limit	***
Print(“Enter	the	lower	limit”)
Sync()
Sleep(2000)
start	=	GetButtonEntry()

rem	***	Get	upper	limit	***
Print(“Enter	the	upper	limit”)
Sync()
Sleep(2000)
num	=	GetButtonEntry()
rem	***	Get	step	size	***
Print(“Enter	the	step	size”)
Sync()
Sleep(2000)
increment	=	GetButtonEntry()
rem	***	Display	numbers	start	to	num	***
for	c	=	start	to	num	step	increment
				Print(c)
				Sync()
				Sleep(200)
next	c
do
loop

Activity 5.10
Code for ForReal:

rem	***	Display	values	from	1	to	2	***
for	ch#	=	1.0	to	2.0	step	0.1
				Print(ch#)
				Sync()
				Sleep(200)
next	ch#
do
loop

Notice that the values displayed are 1.0 to 1.9.

Activity 5.11
Modified version of ForReal:

rem	***	Display	values	from	1	to	2	***
for	ch#	=	1.0	to	2.1	step	0.1
				Print(ch#)
				Sync()
				Sleep(200)
next	ch#
do
loop

The display now runs from 1.0 to 2.0.

Activity 5.12
Code for InTotal:

rem	***	Total	input	values	***

rem	***	Include	button	functions	***
#include	“Buttons.agc”

142 Hands On AGK BASIC: Iteration

rem	***	Set	up	buttons	***
SetUpButtons()
rem	***	Set	total	to	zero	***
total	=	0
rem	***	Read	and	sum	6	numbers	***
for	c	=	1	to	6
				Print(“Enter	number”)
				Sync()
				Sleep(1000)
				no	=	GetButtonEntry()
				total	=	total	+	no
next	c
PrintC(“Total	=	“)
Print(total)
Sync()
do
loop

Activity 5.13
Code for Shades:

rem	***	Display	all	shades	of	red	***
rem	***	Set	red	intensity	to	***
rem	***	range	from	0	to	255
for	red	=	0	to	255
				SetClearColor(red,0,0)
				Sync()
				Sleep(20)
next	red
do

loop

Activity 5.14
Code for Smallest:

rem	***	Find	Smallest	Number	Entered	***

rem	***	Include	Button	functions	***
#include		“Buttons.agc”

rem	***	Display	buttons	***
SetUpButtons()
rem	***	Get	first	number	***
Print(“Enter	number	“)
Sync()
Sleep(2000)
no	=	GetButtonEntry()
rem	***	Set	smallest	to	first	number	***
smallest	=	no
rem	***	FOR	4	times	DO	***
for	c	=	1	to	4
				rem	***	Get	next	number	***
				Print(“Enter	number	“)
				Sync()
				Sleep(1000)
				no	=	GetButtonEntry()
				rem	***	If	number	smaller,	record	it	***
				if	no	<	smallest
								smallest	=	no
 endif
next	c
rem	***	Display	smallest	value	***
PrintC(“Smallest	value	entered	was	“)
Print(smallest)
Sync()
do
loop

Modified version of Smallest:
rem	***	Find	Largest	Number	Entered	***

rem	***	Include	Button	functions	***
#include		“Buttons.agc”

rem	***	Display	buttons	***
SetUpButtons()
rem	***	Get	first	number	***
Print(“Enter	number	“)
Sync()
Sleep(2000)
no	=	GetButtonEntry()
rem	***	Set	largest	to	first	number	***
largest	=	no
rem	***	FOR	4	times	DO	***
for	c	=	1	to	4

				rem	***	Get	next	number	***
				Print(“Enter	number	“)
				Sync()
				Sleep(1000)
				no	=	GetButtonEntry()
				rem	***	If	number	larger,	record	it	***
				if	no	>	largest
								largest	=	no
 endif
next	c
rem	***	Display	largest	value	***
PrintC(“Largest	value	entered	was	“)
Print(largest)
Sync()
do

loop

Activity 5.15
Modified version of SumDice:

rem	***	Total	dice	throws	***

rem	***	set	total	to	zero	***
total	=	0
rem	***	for	5	times	do	***
for	c	=	1	to	5
			rem	***	Display	roll	number	***
	 PrintC(“Roll	number	“)
	 Print(c)
	 Sync()
	 Sleep(1000)
	 rem	***	throw	both	dice	***
	 dice1	=	Random(1,6)
	 dice2	=	Random(1,6)
	 rem	***	display	throw	number	and	dice	values	***
	 PrintC(“dice	1	:	“)
	 PrintC(dice1)
	 PrintC(“										dice	2	:	“)
	 Print(dice2)
	 Sync()
	 Sleep(2000)
	 rem	***	if	either	dice	is	a	1	then	quit	loop	***
	 if	dice1	=	1	and	dice2	=	1
	 	 exit
 endif
	 rem	***	add	dice	throws	to	total	***
	 total	=	total	+	dicel	+	dice2
next	c
rem	***	display	final	score	***
PrintC(“Your	final	score	was	:	“)
Print(total)
Sync()
do
loop

Activity 5.16
rem	***	Display	average	of	6	scores	***

rem	***	Include	Button	functions	***
#include	“Buttons.agc”

rem	***	Display	buttons	***
SetUpButtons()
rem	***	Set	total	to	zero	***
total	=	0
rem	***	FOR	6	times	DO	***
for	c	=	1	to	6
				rem	***	Get	valid	score	***
				Print(“Enter	score	“)
				Sync()
				Sleep(2000)
				score	=	GetButtonEntry()
				while	score	<	0	or	score	>	100
								Print(“Score	must	lie	between	0	and	100”)
								Print(“Enter	score	“)
								Sync()
								Sleep(2000)
								score	=	GetButtonEntry()
 endwhile
				rem	***	Add	score	to	total	***
				total	=	total	+	score
next	c
rem	***	Calculate	average	***
average	=	total/6
rem	***	Display	average	***

Hands On AGK BASIC: Iteration 143

PrintC(“Average	=	“)
Print(average)
Sync()
do

loop

Activity 5.17
No solution required.

Activity 5.18
The output would be:

 -2 0
 -2 1
 -2 2
 -2 3
 -1 0
 -1 1
 -1 2
 -1 3
 0 0
 0 1
 0 2
 0 3
 1 0
 1 1
 1 2
 1 3

On the computer screen, all output would occur on the same
line with a slight delay between each set of values.

Activity 5.19
The code contains a while loop so we need to create three
sets of test data to allow zero, one and more than one
iteration of the loop.

Possible test values are:
 num Expected Results
 (for average)

Test 1 0 0
Test 2 8,0 8
Test 3 12,6,0 9

Code for Average:

rem	***	Calculate	average	of	values	entered	***

rem	***	Include	Button	functions	***
#include	“Buttons.agc”

rem	***	Set	up	buttons	***
SetUpButtons()

total	=	0
count	=	0
Print(“Enter	number	(0	to	stop)”)
Sync()
Sleep(2000)
num	=	GetButtonEntry()
while	num	<>	0
	 total	=	total	+	num
	 count	=	count	+	1
	 Print(“Enter	number	(0	to	stop)”)
	 Sync()
	 Sleep(2000)
	 num	=	GetButtonEntry()
endwhile
average	=	total	/	count
PrintC(“Average	is	“)
Print(average)
Sync()
do
loop

When we run the program with the test data, it turns out that
all the results are as we expected.

However, this is more by good fortune than the fact that the
code is foolproof.

The line
	 average	=	total/count

would, in most languages, cause the program to crash when
we did the first test. This is because count would have the
value zero and hence the calculation would cause a division
by zero error. However, as we saw back in Chapter 3, AGK
BASIC returns zero when division by zero is performed - just
the answer we want!

However, you really should guard against this problem. For
example, if you were to rewrite your code in C++, then that
division by zero calculation would cause a crash.

We can solve the problem by changing the code to
	 if	count	=	0
	 	 average	=	0
	 else
	 	 average	=	total	/	count
 endif

144 Hands On AGK BASIC: Iteration

Hands On AGK BASIC: Resources - A First Look 145

In this Chapter:

T Introducing Images

T Introducting Sprites

T Sound

T Music

T Introducing Text

T Introducing User Interaction

Resources - A First Look

Hands On AGK BASIC: Resources - A First Look 146

Resources - A First Look

Introduction
Any additional visual components or files that we make use of within an AGK project
are known as resources. Typical resources are: images, sounds, music, sprites,
buttons and even text.

Every resource is assigned an integer ID value. No two resources of the same type
may have the same ID. However, resources of different types may share the same ID.
So, it’s okay for an image, say, to have an ID of 1 and a sound resource to also have
an ID of 1.

A resource’s ID can be chosen by the programmer or automatically by the program
itself.

Any separate files required by a resource must be copied into the project’s media
folder.

Images
Image Formats

The type of image you create using your camera or download from the web is a
bitmap image. A bitmap image is constructed from a series of coloured dots known
as pixels. You have probably come across this term before, since the resolution of any
screen or camera is usually quoted in pixels. For example, the Apple iPad 1 & 2
screen has a resolution of 768 pixels by 1024 pixels.

The more pixels an image contains, the more detail it will hold. Therefore, we often
talk about the resolution of an image as being its size in pixels. Many cameras can
easily obtain image resolutions of over 4000 by 3000 pixels.

The other simple way to create a bitmap image is to use a paint package such as
Adobe Photoshop or even the modest Paint program included with Microsoft
Windows.

Many painting packages can resize images. This allows you to shrink or expand the
number of pixels in an image. Decreasing the size of an image means that some of
the details that were in the original image will be lost. On the other hand, increasing
an image’s size cannot create detail that was not there in the original and can often
make the enlarged image look fuzzy and slightly out of focus.

Image files can be stored in many formats. Some formats will save an exact copy of
the original image (known as lossless formats) but others lose a small amount of the
original’s detail (lossy formats). This second option doesn’t sound like a great idea,
but the reason such formats are popular - in fact, the most widely used of all - is
because these lossy formats use compression techniques to create much smaller files.
A lossy image can be stored in a file that is only 10% or even 5% of the lossless file
equivalent.

AGK BASIC recognises three image file formats. These are: BMP, PNG and JPG.
BMP and PNG are lossless file formats and so should only be used for relatively
small images; perhaps character figures and other visual components of a game. JPG

147 Hands On AGK BASIC: Resources - A First Look

is a lossy format and is ideal for use with photographs and larger graphics. The degree
of compression used when saving a file in JPG format can be specified. Less
compression means a better quality image but a larger file.

Image Transparency

Images are always rectangular in shape. So how do you create a game that displays
a football or a spaceship or anything else that isn’t rectangular? All we need to do is
make part of the image transparent. In AGK, there are two methods of achieving
transparent areas within a displayed image. One option is to make black areas within
an image invisible on the screen (see FIG-6.1).

However, there are three things to be careful of when using this option:

± Only pixels which are truly black (red, green and blue intensities = 0) are made
invisible. Part of the image which look black to you may not be completely
black and therefore will not appear transparent when displayed.

± You have to make sure that no part of the image that should remain visible
contains black pixels.

± A final, and perhaps more subtle problem, is caused by anti-aliasing.

Anti-aliasing is an attempt by image manipulation software to blend the edges of
objects within an image in such a way as to give a smooth transition from one object
to the next. This helps hide the pixelated nature of a digital image and in most cases
improves the image. However, it can cause havoc when trying to create a transparent
background. When anti-aliasing has been used in an image, the transition from visible
area to the black invisible area will have a halo of near-black pixels and this halo will
be all too visible when your image appears on screen (see FIG-6.2).

FIG-6.1

Black Pixel
Transparency Black areas

within an image
are...

Original Image Screen Display

...transparent
when displayed on

the screen

FIG-6.2

Anti-aliasing

Halo of
dark pixels caused

by anti-aliasing

Hands On AGK BASIC: Resources - A First Look 148

To avoid the halo problem, make sure anti-aliasing is switched off when you are
creating an image. Using black pixels to produce transparency does have its
limitations. For example, it does not allow us to create semi-transparent elements
within an image.

A second option for creating transparency is to include an alpha channel in the
image itself.

We already know that an image is constructed from a sequence of pixels and that the
colour of each pixel is determined by the intensity of its red, green and blue,
components. These three colour components are sometimes referred to as the image’s
colour channels. Some image formats allow you to add a fourth channel known as
the alpha channel. This channel is a grey-scaled overlay of the image surface and
determines the transparency setting for every pixel within the image. In an area
where the alpha channel is black, the image is fully transparent; where the alpha
channel displays white, the image is opaque; and where the alpha channel is grey, the
image is translucent. The shade of grey determines the degree of translucency.

FIG-6.3 shows an image, its alpha channel and how that image looks when displayed
on screen.

The transparency is more obvious if we place a second image behind the original one
(see FIG-6.4).

BMP and PNG files both allow alpha channel information to be stored (though in
slightly different ways).

FIG-6.3

An Image with an
Alpha Channel

Original Alpha Channel Displayed Image

The alpha
channel determines

transparency

FIG-6.4

Alpha Channel
Transparency

The background
grid shows through
the transparent
parts of Image 1.

Image 1
(with alpha channel)

Image 2

Display

JPG files cannot have an
alpha channel.

149 Hands On AGK BASIC: Resources - A First Look

Images in AGK
LoadImage()

If we want to display one or more images in a game, we need to start by copying the
files containing the images into the AGK project’s media folder. Next we need to
issue a command to load each image into the game itself. This is done using the
LoadImage() statement. There are two variations on this statement (see FIG-6.5).

where:

 id is an integer value specifying the ID to be assigned to the image.
 This value must be 1 or above. No two images may have the
 same ID value.

 sfile is a string giving the name of the file containing the image.
 The file must be in the media folder for this project.

 iflag is an integer (0 or 1) which is used to determine how transparency
 is handled when the image is displayed. If iflag has the value
 zero, then the alpha channel of the image sets the transparency;
 if the value is 1, then the alpha channel is ignored and all black
 pixels within the image are made invisible. A value of zero is
 assumed if this parameter is omitted.

Using the first version of this command, you need to specify the ID being assigned
to the image for the duration of the program. For example, if the first image to be
loaded is called “ball.bmp”, then we would load the image using the statement

 LoadImage(1,”ball.bmp”,1)

This will assign the ID value of 1 to the image and black pixels will be invisible.
Alternatively, we could use version 2 of the statement and write

 id = LoadImage(“ball.bmp”,1)

This time the program decides on the ID to be assigned, but IDs are assigned in
ascending order starting at 10001, so, as long as this is the first image to be loaded it
will be assigned an ID of 10001.

Using the second version guarantees that we will not attempt to assign the same ID
to two different images (which would, in any case, produce an error).

CreateSprite()

Although all images need to be loaded before they can be used, in order to see an
image on the screen, you’ll need to load that image into a sprite. To do this you need
to create a sprite and specify the image to be displayed by the sprite. This is done
using the CreateSprite() statement (see FIG-6.6).

FIG-6.5

LoadImage() ()

integer

LoadImage id
Version 1

, sfile iflag,[]
Version 2

()LoadImage sfile iflag,[]

Hands On AGK BASIC: Resources - A First Look 150

where:

 id is an integer value specifying the ID to be assigned to the sprite.
 This value must be 1 or above. No two sprites may have the
 same ID value.

 imageId is an integer value specifying the ID of the image being copied
 into the sprite. This image must previously have been loaded
 using a LoadImage() statement. Use 0 to create a white sprite
 without an image.

Like the two versions of LoadImage(), the two options in the CreateSprite()
statement allow you to choose between deciding on the ID number yourself (version
1) or letting the program decide for you (version 2 - assigned values start at 10001).

In the example we are about to create, we will assign our own ID numbers since it
uses only a single image and a single sprite. So, to create a sprite showing the ball
image, we would first load the image and then create the sprite:

 LoadImage(1,”ball.bmp”,1)
 CreateSprite(1,1)

Notice that the image and sprite have both been assigned an ID of 1. This is not a
problem since they are two different types of objects (image and sprite). Only when
you assign the same ID to two objects of the same type do you cause an error. Now
we are ready to create a program to display our first image (see FIG-6.7).

AGK has a problem with sizing the image. Since we are working with a percentage-
based screen layout, it has no idea exactly how large to make the sprite. It handles
this by assuming the physical size of the image represents the percentage required.
The ball image is 64 pixels wide by 64 pixels high, so AGK assumes you want the

()

integer

CreateSprite id
Version 1

, imageId

Version 2

()CreateSprite imageId

FIG-6.6

CreateSprite()

FIG-6.7

Displaying a Sprite

When a sprite is first
created, its top left
corner is at position
(0,0) - the top left corner
of the app window.

rem *** First Sprite ***
rem *** Load image ***
LoadImage(1,”ball.bmp”,1)
rem *** Create sprite ***
CreateSprite(1,1)
Sync()
do
loop

Activity 6.1

Create a new project called FirstSprite. Compile the default code in order to
create the project’s media folder. From the files you downloaded to accompany
this book, go to the AGKDownloads/Chapter 6 folder and copy the file ball.
bmp to the project’s media folder.

Change the contents of main.agc to match that given in FIG-6.7. Run and save
the project. What is strange about the image?

At this stage we can
think of a sprite as
nothing more than an
image which appears
on the screen. But, as
we will discover later,
there are many sprite-
related commands which
allow us to do various
operations such as move,
rotate, resize and detect
sprite collisions.

151 Hands On AGK BASIC: Resources - A First Look

image to take up 64% of the width and 64% of the height of the app window.
Unfortunately, this is nowhere near the actual size we want.

SetSpriteSize()

The SetSpriteSize() statement allows use to specify the dimensions of a sprite. The
sizes are given as a percentage of the screen, or in virtual pixels, depending on the
option chosen when the program was created. The statement has the format shown in
FIG-6.8.

where:

 id is the integer value previously assigned as the ID of the sprite
 to be resized.

 fx is a real value giving the width required. This value is given as a
 percentage of the screen width or in virtual pixels as appropriate.

 fy is a real value giving the height required (percentage or virtual
 pixels).

So, if we wanted the ball sprite to occupy only 10% of the screen, we would use the
line:

 SetSpriteSize(1,10,10)

As you can see from Activity 6.2, making the sprite 10% in both directions works
only when the app window is square. Increasing the app window height also means
an increase in the height of the sprite and our ball is no longer circular.

To solve this problem, SetSpriteSize() allows you to set the actual size of one
dimension and use the value -1 for the other. When you choose this option, AGK
works out the second dimension automatically to ensure that the sprite retains its
original shape. For example, if we set the fx parameter to 10 and fy to -1 using the
line

 SetSpriteSize(1,10,-1)

the sprite will return to its round shape.

Of course, setting the fy to 10 and fx to -1 with

 SetSpriteSize(1,-1,10)

will still result in a round ball, but it will be larger since 10% of the app window’s
height is much greater than 10% of its width (see FIG-6.9).

FIG-6.8

SetSpriteSize()

()SetSpriteSize id fx fy

Activity 6.2

Modify FirstSprite by adding the SetSpriteSize() statement given above.
Run the program and see how this changes the image displayed.

Change the height setting in setup.agc to 1024. Rerun the program. How is the
sprite affected? Save your project.

Hands On AGK BASIC: Resources - A First Look 152

 The only problem now with our sprite app is that, since the app window background
is black, we really can’t see if the black areas of the sprite are, indeed, invisible.

SetSpritePosition()

An existing sprite can be moved to a new position on the screen using the
SetSpritePosition() statement which has the format shown in FIG-6.10.

where:

 id is the integer value previously assigned as the ID of the sprite
 to be moved.

 fx is a real value giving the new x-coordinate (percentage or virtual
 pixels).

 fy is a real value giving the new y-coordinate. Measured in virtual
 pixels or percentage.

By default, it is the top left corner of a sprite that is placed at the position specified.

Activity 6.3

Modify FirstSprite to use the -1 parameter in SetSpriteSize(). Try out both
options, making the width -1 on the first run and the height -1 on the second
run.

Save your project.

SetSpriteSize(1,-1,10)SetSpriteSize(1,10,-1)

10%
100%

100%

10%

FIG-6.9

How Sprite Size
Changes

Activity 6.4

Add a SetClearColor() statement to your FirstSprite program to create a
white background. (You’ll also need to add an extra Sync()statement.)

Are the black pixels within the ball image invisible?

Save your project.

FIG-6.10

SetSpritePosition() ()SetSpritePosition id , fx , fy

153 Hands On AGK BASIC: Resources - A First Look

By placing the SetSpritePosition() statement within a for loop and using the loop
counter as a parameter, we can get the sprite to travel across the window.

SetSpriteDepth()

The program in FIG-6.11 is an extension of your FirstSprite project and demonstrates
one sprite passing “behind” another.

Activity 6.5

In FirstSprite, add a two second delay and then move the sprite to the centre of
the app window. Test and save your project.

Activity 6.6

Remove your last modification from FirstSprite and replace it with the
following code:

 for p = 1 to 100
 SetSpritePosition(1,p,p)
 Sync()
 Sleep(50)
 next p

Test the new version of the project.

FIG-6.11

Demonstrating Sprite
Depth

rem *** Sprite Depth ***
rem *** Clear screen to white ***
SetClearColor(255,255,255)
Sync()
rem *** Load images ***
LoadImage(1,”ball.bmp”,1)
LoadImage(2,”poppy.bmp”,1)
rem *** Create ball sprite ***
CreateSprite(1,1)
SetSpriteSize(1,10,-1)
rem *** Create poppy sprite ***
CreateSprite(2,2)
SetSpriteSize(2,20,-1)
SetSpritePosition(2,50,50)
Sync()
rem *** Move sprite across the screen ***
for p = 1 to 100
 SetSpritePosition(1,p,p)
 Sync()
 Sleep(50)
next p
do
loop

Activity 6.7

Modify your FirstSprite project to match the code given in FIG-6.11.

Test and save your project.

Hands On AGK BASIC: Resources - A First Look 154

The ball passes “behind” the poppy because the ball sprite was created before the
poppy. If we had wanted the ball to pass over the poppy, then we could have achieved
this by having created the ball sprite after the poppy sprite. But another option is
available; we can adjust the depth of a sprite using the SetSpriteDepth() statement.
Sprite depth can be set to any value from 0 to 10000.

In original hand-drawn cartoons, the overall image is made up of a layer of transparent
acetates. Different elements of the picture were drawn on different acetates. Those
elements on the top-most acetate were at the “front” and those on the bottom acetate
were at the “back”. AGK depth settings are equivalent to those acetate layers: depth
0 is at the “front”; depth 10000 is at the “back”.

 The format of the SetSpriteDepth() statement is shown in FIG-6.12.

where:

 id is the integer value previously assigned as the ID of the sprite.

 idepth is an integer value giving the layer setting. A lower number will
 bring the sprite “forward” towards the top layer. This value can
 be in the range 0 to 10,000.

When a sprite is created, it is assigned a default layer of 10. Sprites on the same layer
have a depth determined by the order in which they were created (as we have already
seen).

GetSpriteDepth()

To determine the current depth of a sprite, use the GetSpriteDepth() statement (see
FIG-6.13).

where:

 id is the integer value previously assigned as the ID of the sprite.

CloneSprite()

You can make a copy of a sprite using the CloneSprite() statement. This will make
an exact copy of the sprite specified. The statement’s format is shown in FIG-6.14.

where:

 id is the integer value of the ID to be assigned to the new sprite.

FIG-6.12

SetSpriteDepth()

()SetSpriteDepth id , idepth

Activity 6.8

Modify FirstSprite, assigning the ball sprite to layer 9 immediately after its
creation. How does this affect the program’s display? Save your project.

FIG-6.13

GetSpriteDepth()

()GetSpriteDepthinteger id

FIG-6.14

CloneSprite()

()CloneSprite id , idToCopy

155 Hands On AGK BASIC: Resources - A First Look

 idToCopy is an integer value giving the ID of the existing sprite to be
 cloned.

Whatever characteristics have been set for the original sprite (size, transparency,
depth, etc.) will be duplicated in the clone.

SetSpriteVisible()

We can make a sprite invisible - and make it reappear - using the SetSpriteVisible()
statement which has the format shown in FIG-6.15.

where:

 id is the integer value previously assigned as the ID of the sprite.

 ivisible is an integer value (0 or 1) specifying that the sprite is to be
 hidden (0) or made visible (1).

DeleteSprite()

When a sprite is no longer required by a program, that sprite can be deleted. Although
deletion is not necessary, it does free up resources on the machine which can, in turn,
speed up your game. Sprites are deleted using the DeleteSprite() statement whose
format is shown in FIG-6.16.

where:

 id is an integer value giving the ID of the sprite to be deleted.

DeleteAllSprites()

If your program contains several sprites, they can all be deleted, using the
DeleteAllSprites() statement (see FIG-6.17).

Activity 6.9

Modify FirstSprite, making a copy of the poppy sprite and positioning it at
(20,20).

Assign the new sprite a depth setting of 8. What happens as the ball passes the
two poppies? Save your project.

FIG-6.15

SetSpriteVisible()

()SetSpriteVisible id , ivisible

Activity 6.10

Modify FirstSprite so that the two poppy sprites are hidden after the ball has
moved to the bottom of the screen. Save your project.

FIG-6.16

DeleteSprite()

(DeleteSprite id)

FIG-6.17

DeleteAllSprites() ()DeleteAllSprites

Hands On AGK BASIC: Resources - A First Look 156

DeleteImage()

When an image is no longer required by a sprite, or when the sprite using an image
has been deleted, then that image can be deleted, thereby freeing up further resources.
To delete an image we use the DeleteImage() statement (see FIG-6.18).

where:

 id is an integer value giving the ID of the image to be deleted.

Deleting a resource only deletes it from the computer’s memory; the actual file
containing the resource is not affected.

DeleteAllImages()

Rather than delete images individually, you can delete every loaded image using the
DeleteAllImages() statement (see FIG-6.19).

Of course, you should only call this statement when every image in the program is no
longer being used by other program elements such as a sprite.

There are many more sprite commands and these will be covered in later chapters.

Sound
Sound files, like image files, come in many different formats. And like those for
images, some formats are lossy, but have small file sizes, while others are lossless
with larger file sizes. The current version of AGK will handle only uncompressed
WAV sound files.

To play a sound, the file containing that sound must first be copied into the project’s
media folder. Within the program we can then load and play the file.

LoadSound()

Like images, sounds must be loaded before they can be used. This is done using the
LoadSound() statement (see FIG-6.20).

where:

 id is an integer value specifying the ID to be assigned to the sound
 file.

 sfile	 is a string giving the name of the file to be loaded. This must be
 a WAV file and must be stored in the project’s media folder.

FIG-6.18

DeleteImage() (DeleteImage id)

FIG-6.19

DeleteAllImages() ()DeleteAllImages

FIG-6.20

LoadSound() ()

integer

LoadSound id
Version 1

, sfile

Version 2

()LoadSound sfile

157 Hands On AGK BASIC: Resources - A First Look

In the first version of the statement the program chooses the ID number; in the second
version the ID value is automatically selected by AGK and returned by the statement.

PlaySound()

Once loaded, a sound file can be played using the PlaySound() statement (see FIG-
6.21).

where:

 id is an integer value specifying the ID previously assigned to the
 sound.

 ivol is an integer value (0 to 100) representing the volume setting.
 The default setting is 100.

 iloop is an integer value (0 or 1) which determines if the sound is to
 play continuously. If set to 0, the sound will play only once; if
 set to 1, the sound will be repeated. Zero is the default value.

 iprrty is an integer value which is designed to be used to set the sound’s
 priority. This option is currently not implemented.

StopSound()

When a sound is set to play only once, it will, obviously, stop when the end of the file
is reached, but if you want playing to stop prematurely, you can do so using the
StopSound()statement. This statement has the format shown in FIG-6.22.

where:

 id is an integer value giving the ID of the sound that is to be stopped.

DeleteSound()

When a sound resource is no longer required, it is best to delete that resource from
your program. This can be done using the DeleteSound() statement (see FIG-6.23
for format).

where:

 id is an integer value giving the ID of the sound that is to be deleted.

SetSoundSystemVolume()

Although the volume of a specific sound is set when that sound is first loaded and
cannot be adjusted later, the system volume can be adjusted at any time using the
SetSoundSystemVolume() statement which has the format shown in FIG-6.24.

Automatically assigned
ID values start at 1.

FIG-6.21

PlaySound() ()PlaySound id ,[ivol ,[iloop ,[iprrty]]]

Several sound files can
be played at the same
time.

FIG-6.22

StopSound()

(StopSound id)

FIG-6.23

DeleteSound() (DeleteSound id)

Hands On AGK BASIC: Resources - A First Look 158

where:

 ivol is an integer (0 to 100) giving the percentage volume adjustment.
 For example, 50 would give half volume, 100 would leave the
 volume unchanged.

GetSoundExists()

You can check that a sound with a specific ID value currently exists using
GetSoundExists() (see FIG-6.25).

where:

 id is an integer value giving the ID of the sound to be checked.

The statement will return 1 if a sound of the specified ID currently exists; otherwise
zero is returned.

GetSoundsPlaying()

We can also check the number of instances of a sound that are playing at the same
time. GetSoundsPlaying()returns the number of instances of a specified sound
currently in existence (see FIG-6.26).

where:

 id is an integer value giving the ID of the sound whose number of
 instances is to be returned.

GetSoundInstances()

The GetSoundsInstances()statement performs exactly the same purpose as
GetSoundsPlaying() and so the two statements are interchangeable. The statement’s
syntax is shown in FIG-6.27.

where:

 id is an integer value giving the ID of the sound whose number of
 instances is to be returned.

FIG-6.24

SetSoundSystemVolume()

(SetSoundSystemVolume ivol)

FIG-6.25

GetSoundExists()

(GetSoundExists id)integer

(GetSoundsPlaying id)integer
FIG-6.26

GetSoundsPlaying()

FIG-6.27

GetSoundInstances() (GetSoundInstances id)integer

Activity 6.11

Start a new project called Sounds. Compile the default code to create the media
folder. Copy the file J1to10.wav from the AGKDownloads/Chapter6 to the
project’s media folder.

159 Hands On AGK BASIC: Resources - A First Look

When the program plays a sound file it does not halt execution of the other statements
in your program while the sound is played. It merely passes the sound file details to
your sound card, leaves the sound card to deal with playing the file, and then gets on
with executing the other statements in your program.

We have seen in previous chapters that the Sleep() statement halts the program for
a specified time. However, since the sound file is being handled by the sound card,
any sounds already being played are not affected by the Sleep() statement.

Activity 6.11 (continued)

Recode the contents of main.agc to read:

 LoadSound(1,”J1to10.wav”)
 PlaySound(1)
 do
 loop

Make sure the sound is activated and the volume turned up on your computer.

Compile and run the program. Does the sound play? Save your project.

Activity 6.12

Modify the code in Sounds so that it displays the numbers 1 to 10 as the sound
file plays. The code for this is:
 LoadSound(1,”J1to10.wav”)
 PlaySound(1)
 for c = 1 to 10
 Print(c)
 Sync()
 Sleep(1000)
 next c
 do
 loop
Test the program. Does the sound stop when the Sleep(1000) statement is
executed? Save your project.

Activity 6.13

In this Activity we are going to examine what is required in order to have a
sound file played repeatedly.

Remove the for..next loop and its loop body from Sounds.
Change the line
 PlaySound(1)
to
 PlaySound(1,100,1)
so that the sound should play repeatedly at full volume. Run the program. Does
the sound play more than once?

Inside the do..loop add the line
 Sync()
How does this affect the playing of the sound file? Save your project.

Hands On AGK BASIC: Resources - A First Look 160

So the Sync() statement needs to be executed in order for the sound to play
continuously. This is because the Sync() statement does more than just update the
screen. It handles details about other things within the program including making
sure sound files are replayed when appropriate.

Music
Music files are handled separately from sound files and although some of the
commands for handling music look very similar to those for sounds, there are major
differences.

AGK currently plays only MP3, OGG Vorbis and ACC formatted music files.

LoadMusic()

The LoadMusic() statement loads a specified music file and assigns it an ID number.
The statement has the format shown in FIG-6.28.

where:

 id is an integer value specifying the ID to be assigned to the music
 file.

 sfile	 is a string giving the name of the file to be loaded, This must be
 an MP3, OGG Vorbis or AAC file and must be stored in the
 project’s media folder.

In the first version of the statement, the programmer chooses the ID number; in the
second version, the ID value is automatically selected by AGK and returned by the
statement.

PlayMusic()

Once loaded, a music file is played using the PlayMusic() statement (see FIG-6.29).

where:

 id is an integer value giving the ID of the music file to be played.

 iloop is an integer value (0 or 1) which determines if the music is to
 play continuously. If set to 0, the music will play only once; if
 set to 1, the music will be repeated. Zero is the default value.

 idStrt is an integer value giving the lowest ID of the list of music files
 to be played.

FIG-6.28

LoadMusic() ()

integer

LoadMusic id

Version 1

, sfile

Version 2

()LoadMusic sfile

Automatically assigned
ID values start at 1.

FIG-6.29

PlayMusic()

()PlayMusic id idStrtiloop idFin

Only one music file
can be playing at any
one time.

161 Hands On AGK BASIC: Resources - A First Look

 idFin is an integer value giving the highest ID of the list of music files
 to be played.

This command will play all or most of the MP3 files stored in the media folder
without explicitly specifying all the ID numbers. To stop this you need to use the
longest form of the command and state explicitly which file or group of files are to
be played.

The simplest version of this command is

 PlayMusic()

which will play the music file with the lowest ID. For example, if a program started
with the lines

 LoadMusic(1,“TrackA.mp3”)
 LoadMusic(2,”TrackB.mp3”)
 LoadMusic(3,”TrackC.mp3”)
 LoadMusic(4,”TrackD.mp3”)
 LoadMusic(5,”TrackE.mp3”)

and followed this with

 PlayMusic()

then TrackA would be played first and then all other tracks played in sequence.

 PlayMusic(2,0)

would play TrackB followed by TrackC, TrackD and TrackE. The tracks would be
played once only.

 PlayMusic(3,1)

would play TrackC, TrackD, and TrackE and then play all five tracks continuously.

 PlayMusic(1,1,3,5)

would play TrackA, TrackB then repeat TrackC, TrackD and TrackE continuously.

 PlayMusic(3,0,3,3)

would play TrackC once only.

Using this command also requires you to add a Sync() statement within the do..
loop structure.

These tracks would
have to be stored in the
project’s media folder.

Activity 6.14

For copyright reasons, no MP3 files are included in the downloads for this
book.

Start a new project called Music. Compile the default code to create the
project’s media folder. Copy three of your own MP3 files into the media folder.

Modify main.agc to load all three files but play only the last one. The file
should be played only once. Test and save your code.

Hands On AGK BASIC: Resources - A First Look 162

PauseMusic()

You can pause a playing MP3 file using the PauseMusic() statement. This has the
format shown in FIG-6.30.

Note that there is no need for an ID parameter since only one music file can be
playing at any instant.

ResumeMusic()

A paused MP3 file can be resumed from the point where it paused using the
ResumeMusic() statement (see FIG-6.31).

StopMusic()

To stop a music file completely use StopMusic() (see FIG-6.32).

DeleteMusic()

When a music resource is no longer required you can use the DeleteMusic()
statement to free up the memory occupied by the file (see FIG-6.33).

where:

 id is an integer value giving the ID of the music resource to be
 deleted from the program.

We can determine various characteristics about music files from several other music
statements.

GetMusicExists()

The GetMusicExists() statement returns 1 if a music resource of a specified ID
currently exists; otherwise zero is returned (see FIG-6.34).

where:

 id is an integer value giving the ID of the music resource to be
 checked.

SetMusicFileVolume()

You can set the volume of a specific music file using the SetMusicFileVolume() (see
FIG-6.35).

FIG-6.30

PauseMusic()

(PauseMusic)

FIG-6.31

ResumeMusic()

(ResumeMusic)

FIG-6.32

StopMusic()

(StopMusic)

FIG-6.33

DeleteMusic()

(DeleteMusic)id

FIG-6.34

GetMusicExists()

(GetMusicExists id)integer

FIG-6.35

SetMusicFileVolume() (SetMusicFileVolume ivol)id

163 Hands On AGK BASIC: Resources - A First Look

where:

 id is an integer value giving the ID of the music whose volume is
 to be changed.

 ivol is an integer giving the volume as a percentage of full volume
 (0 - silent; 100 - full volume).

SetMusicSystemVolume()

To set the volume for every music track, the SetMusicSystemVolume() statement can
be used (see FIG-6.36).

where:

 ivol is an integer giving the volume as a percentage of full volume
 (0 - silent; 100 - full volume).

Detecting User Interaction
Most programs react to the user clicking a mouse or touching a pressure-sensitive
screen. AGK uses three main commands to detect a mouse/screen press.

GetPointerPressed()

One of these commands is the GetPointerPressed() statement which has the format
shown in FIG-6.37.

The statement returns 1 immediately the press occurs. Before and after that instant,
zero is returned.

GetPointerReleased()

A complementary statement is GetPointerReleased() which returns 1 the instant
the mouse button is released, or the finger lifted from the screen. This statement has
the format shown in FIG-6.38.

GetPointerState()

This third statement returns 1 while the button or finger is being pressed down and
returns 0 when the button/finger is not pressed. Note this is different from the first
two statements which only return 1 for a single instant as the mouse/finger is pressed/
lifted. The GetPointerState() command has the format shown in FIG-6.39.

The code in FIG-6.40 demonstrates the use of the GetPointerPressed() and
GetPointerReleased() statements.

(SetMusicSystemVolume ivol)
FIG-6.36

SetMusicSystemVolume()

FIG-6.37

GetPointerPressed()

()GetPointerPressedinteger

FIG-6.38

GetPointerReleased()

()GetPointerReleasedinteger

FIG-6.39

GetPointerState()

()GetPointerStateinteger

Hands On AGK BASIC: Resources - A First Look 164

Notice that for the first time, the main code is within the do..loop structure which
loops continually while testing for the button/screen press.

If we are not interested in detecting the exact moment the button is pressed or
released, but want to know if the button/finger is currently pressed down/touching the
screen or up/not touching the screen, then the GetPointerState() command will be
more useful.

GetPointerX() and GetPointerY()

We can find out the exact position on the screen where a press has occurred using
GetPointerX() (which returns the x-coordinate) and GetPointerY() (which returns
the y-coordinate). The formats for these two statements are shown in FIG-6.41.

FIG-6.40

Using Pointer
Statements

Sync()
do
 rem *** Check for press ***
 if GetPointerPressed()=1
 Print(“Pressed”)
 endif
 rem *** Check for release ***
 if GetPointerReleased()=1
 Print(“Released”)
 endif
 Sync()
loop

Activity 6.15

Start a new project called, PressedFlower and change the code in main.agc to
match that given in FIG-6.40.

Test the program and check that you can see messages as you press and release
the mouse button. Save your project.

Activity 6.16

Modify the code in PressedFlower to read:
 Sync()
 do
 if GetPointerState()=1
 Print(“Pressed”)
 else
 Print(“Released”)
 endif
 Sync()
 loop
Test the new code. How do the messages that appear on the screen differ from
those displayed by the previous version of the program? Save your project.

FIG-6.41

GetPointerX()
GetPointerY()

()GetPointerXinteger

()GetPointerYinteger

165 Hands On AGK BASIC: Resources - A First Look

GetSpriteHit()

We can find out if a particular screen position is over a sprite using the GetSpriteHit()
command. This is useful for finding out if the user has, for example, clicked/pressed
on a sprite. The command’s format is shown in FIG-6.42.

where:

 fx, fy are real numbers giving the position within the app window to be
 tested. The values will represent percentages or virtual
 coordinates depending on the window setup.

If the location is over a sprite, the sprite ID is returned, otherwise zero is returned.

Text Resources
We’ve already seen how to display information on the screen using the Print()
statement, but its main limitation is that we cannot choose the exact position at which
the output is to appear. This will be a critical requirement for any game.

Activity 6.17

Modify the code in PressedFlower by removing the line
 Print(“Pressed”)
and replacing it with
 PrintC(GetPointerX())
 PrintC(“ “)
 Print(GetPointerY())

Test and save your project.

FIG-6.42

GetSpriteHit()

()GetSpriteHitinteger fx fy

Activity 6.18

Modify PressedFlower by removing all of the code within the do..loop
structure.

Add code to display a sprite showing poppy.bmp at the centre of the app
window (set the sprite’s width to 15%).

To hide the poppy when it is clicked on, change the code within the do..loop
structure to:
 if GetPointerPressed()=1
 x# = GetPointerX()
 y# = GetPointerY()
 hit = GetSpriteHit(x#,y#)
 if hit <> 0
 SetSpriteVisible(1,0)
 endif
 endif
 Sync()

Test and save your project.

Hands On AGK BASIC: Resources - A First Look 166

Luckily, AGK offers a second and more controlled way of creating textual output;
text resources. Just like images, sprites, sound, and music resources, text resources
are created and assigned a unique ID.

A few of the many statements available for manipulating text resources are described
here.

CreateText()

The CreateText() statement allows us to create a new text resource. The statement
has the format shown in FIG-6.43.

where:

 id is an integer value specifying the ID to be assigned to the text
 resource.

 string is a string containing the text to be held within the text resource.

Version 1 of the statement allows the programmer to select the resource ID; version
2 automatically assigns an ID and returns that ID.

For example, we could create a text resource containing the phrase Hello world,
assigning it an ID of 1 using the statement:

 CreateText(1, “Hello world”)

SetTextColor()

We can select the color and transparency of the text using the SetTextColor()
statement (see FIG-6.44).

where:

 id is an integer value specifying the ID of the text resource whose
 colour is to be set.

 ired is an integer value specifying the intensity of the red component
 of the colour. Range 0 to 255.

 igreen is an integer value specifying the intensity of the green component
 of the colour. Range 0 to 255.

 iblue is an integer value specifying the intensity of the blue component
 of the colour. Range 0 to 255.

 Ë Text resources
use the same
character images as
Print() to form the
displayed text.

FIG-6.43

CreateText() ()

integer

id

Version 1

, string

Version 2

()CreateText string

CreateText

FIG-6.44

SetTextColor()

()SetTextColor id , ired , igreen , iblue itrans,

The default colour
for a text resource is
white.

167 Hands On AGK BASIC: Resources - A First Look

 itrans is an integer value specifying the opaqueness of the text.
 Range 0 (invisible) to 255 (fully opaque).

For example, if we have already created a text resource with an ID of 1, then we can
display that text in opaque black using the line:

 SetTextColor(1,0,0,0,255)

SetTextPosition()

By default, text will appear in the top left corner of the app window. To position it
elsewhere we need to use the SetTextPosition() statement which has the format
shown in FIG-6.45).

where:

 id is the integer value previously assigned as the ID of the text
 to be moved.

 x is a real value giving the new x-coordinate. This will be in virtual
 pixels or percentage depending on the coordinate system defined
 when the app window was created.

 y is a real value giving the new y-coordinate measured in virtual
 pixels or percentage.

We could place text resource 1 at the centre of the app window using the statement:

 SetTextPosition(1,50,50)

The position (50,50) refers to the top left part of the text (see FIG-6.46).

SetTextSize()

The size of the text can be adjusted using the SetTextSize() statement (see FIG-
6.47).

FIG-6.45

SetTextPosition() ()SetTextPosition id , x , y

FIG-6.46

Positioning a Text
Resource

Hello world

50%

50%

FIG-6.47

SetTextSize() ()SetTextSize id , fsize

Hands On AGK BASIC: Resources - A First Look 168

where:

 id is the integer value previously assigned as the ID of the text
 to be resized.

 fsize is a real value specifying the height of the characters within the
 text. This is measured in percentage or virtual pixels depending
 on the setup. The width is calculated automatically.

The default size for all text output is 4. Remember also that the larger the text
becomes, the more obvious the limitations of the images from which it is derived.

We could change the size of the text displayed by text resource 1 from the default 4
to 6 using the statement:

 SetTextSize(1,6)

SetTextString()

The actual text contained within a text resource can be changed using the
SetTextString() statement (see FIG-6.48).

where:

 id is the integer value previously assigned as the ID of the text
 resource whose text is to be changed.

 string is the new string to be assigned to the text resource.

SetTextVisible()

You can hide a text resource or make it reappear using the SetTextVisible()
statement (see FIG-6.49).

where:

 id is the integer value previously assigned as the ID of the text
 resource to be operated on.

 ivisible is an integer value (0 or 1) used to hide or display the text.
 (0 - hide ; 1 - show)

DeleteText()

When a text resource is no longer required, it should be deleted, thereby freeing up
memory resources. This is done using the DeleteText() statement (see FIG-6.50).

where:

FIG-6.48

SetTextString() ()SetTextString id , string

FIG-6.49

SetTextVisible() ()SetTextVisible id ivisible

FIG-6.50

DeleteText() ()idDeleteText

169 Hands On AGK BASIC: Resources - A First Look

 id is an integer value giving the ID of the text resource to be
 deleted from the program.

DeleteAllText()

If your program contains several text resources and you wish to remove all of them,
use DeleteAllText() (see FIG-6.51).

Using a Text Resource

The program below demonstrates most of the text resource statements we have
covered here. The purpose of the code is to display a sequence of dots. Starting with
one dot and increasing to 10 before starting again at one dot. This sequence is repeated
five times before the program stops. A simple animation such as this might be used
to indicate to the user that the program is busy.

The program’s logic can be described in structured English as:

Create empty text resource
Set text colour
Set text size
Set text position
FOR 5 times DO
 Create empty string
 FOR dots = 1 TO 10 DO
 Add dot to string
 Place string in text resource
 Wait 200 msecs
 ENDFOR
 Empty text resource
 Wait 1 sec
ENDFOR
Delete text resource

The code for the program is shown in FIG-6.52.

FIG-6.51

DeleteAllText() ()DeleteAllText

FIG-6.52

Using a Text Resource

rem *** Text Resource demo ***

rem *** Create empty string ***
CreateText(1,””)
rem *** Set resource attributes ***
SetTextPosition(1,15,30)
SetTextColor(1,250,250,0,255)
SetTextSize(1,10)
rem *** FOR 5 times DO ***
for c = 1 to 5
 rem *** Empty string ***
 text$ = “”
 for dots = 1 to 10
 rem *** Add dot to string ***
 text$ = text$+”.”
 rem *** Place string in text resource ***
 SetTextString(1,text$)
 Sync()
 rem *** Wait 200 msecs ***
 Sleep(200)
 next dots

Hands On AGK BASIC: Resources - A First Look 170

Later
This chapter has covered all of the statements available for manipulating sound and
music resources. However, there are many other commands that can be used with
images, sprites, text and user input which are not covered here. These will be
explained in later chapters.

Summary
± Resources is the name given to other elements added to a project. These can be

images, sounds, music, sprites, virtual buttons, or text.

± A resource needs to be created and assigned an ID before it can be used.

± No two resources of the same type may be assigned the same ID number.

± Resources of different types may have identical ID numbers.

± As a general rule, resources should be deleted when no longer required.

± Files containing resources must be stored in the project’s media folder.

± Most images are constructed from colour dots known as pixels.

± An image constructed from pixels is known as a bitmap image.

± Bitmap images can be stored in many different formats.

± Lossless formats save an exact copy of an image but create large files.

± Lossy formats save a degraded copy of the image but create smaller files.

± AGK can handle three bitmap formats: BMP, PNG, and JPG.

± BMP and PNG are lossless file formats; JPG is a lossy file format.

± Images can contain transparent elements.

± Transparency can be achieved in one of two ways: by making all black pixels

FIG-6.52
(continued)

Using a Text Resource

 rem *** Empty text resource ***
 SetTextString(1,””)
 Sync()
 rem *** Wait one second ***
 Sleep(1000)
next c
rem *** Delete resource ***
DeleteText(1)
Sync()
do
loop

Activity 6.19

Start a new project called UsingText and modify the code in main.agc to match
that given in FIG-6.52. Test the program.

Modify the code to use the underscore character (_) instead of the full stop.

Test and save your project.

171 Hands On AGK BASIC: Resources - A First Look

invisible or by adding an alpha channel to the image.

± Alpha channels allow degrees of translucency.

± When creating an image in which black elements are to be made invisible
make sure that the image has not been created using anti-aliasing.

± Anti-aliasing can cause problems around the edges of objects within an image.

± Images need to be loaded into AGK and given a unique ID number.

± To display an image on the screen it must first be loaded into a sprite.

± Using the default setup, screen distances are given in percentage terms and
sprites use the pixel size of the image it contains as a percentage value when
determining the size of the image.

± Sprites can be resized, moved, and made invisible.

± Sprites can be placed on different layers.

± There are 10,001 layers numbered 0 to 10,000.

± Layer 0 is the top layer; layer 10,000 is the bottom layer.

± A sprite placed on a higher layer will pass in front of a sprite placed on a lower
layer.

± A sprite can be cloned.

± A sprite can be made invisible.

± Deleting a sprite frees up the resources it requires.

± Sound files must be in uncompressed WAV format.

± A sound can be set to play one time only or repeatedly.

± The volume of an individual sound can be set only when playing starts.

± The overall system volume can be modified at any time.

± Music files must be in MP3 OGG Vorbis or AAC formats.

± By default, all music files are played once when a PlayMusic() command is
issued.

± Basic user interaction allows us to detect a screen touch or mouse button press.

± It is possible to detect when:
 the mouse button/screen is first pressed
 the mouse button/screen is first released
 the current state of the mouse button/screen - pressed or unpressed.

± We can detect if a mouse/screen press occurs over a sprite.

± Using a text resource allows us to control attributes of a string.

± The string within a text resource can be modified, resized, positioned,
coloured, and made transparent.

Hands On AGK BASIC: Resources - A First Look 172

Solutions
Activity 6.1

Although the image is only 64 x 64 pixels it appears much
larger within the app window.

Activity 6.2
Modified FirstSprite:

rem *** First Sprite ***

rem *** Load image ***
LoadImage(1,”ball.bmp”,1)
rem *** Create sprite ***
CreateSprite(1,1)
rem *** Resize sprite ***
SetSpriteSize(1,10,10)
Sync()
do
loop

The sprite now occupies 10% of the width and height of the
app window. Because the app window is square, this means
that the ball is perfectly round.

To modify the app window height, the height line in setup.
agc needs to changed to

 height=1024

When the height of the app window is changed, 10% of the
height is much greater than 10% of the width and so the ball
becomes stretched.

Activity 6.3
The line

 SetSpriteSize(1,10,10)

should first be changed to
 SetSpriteSize(1,-1,10)

The ball will be round but this time it is 10% of the height
and so, much larger than previously.

On the next run the line should now read
SetSpriteSize(1,10,-1)

which will return the ball to the size it had been before we
resized the app window (10% of the width).

Activity 6.4
Modified FirstSprite:

rem *** First Sprite ***

rem *** Clear screen to white ***
SetClearColor(255,255,255)
Sync()
rem *** Load image ***
LoadImage(1,”ball.bmp”,1)
rem *** Create sprite ***
CreateSprite(1,1)
rem *** Resize sprite ***
SetSpriteSize(1,10,-1)
Sync()
do
loop

The black pixels are invisible.

Activity 6.5
Modified FirstSprite:

rem *** First Sprite ***

rem *** Clear screen to white ***
SetClearColor(255,255,255)
Sync()
rem *** Load image ***
LoadImage(1,”ball.bmp”,1)
rem *** Create sprite ***
CreateSprite(1,1)
rem *** Resize sprite ***
SetSpriteSize(1,10,-1)
Sync()
rem *** Wait then reposition sprite ***
Sleep(2000)
SetSpritePosition(1,50,50)
Sync()
do
loop

Activity 6.6
Modified FirstSprite:

rem *** First Sprite ***

rem *** Clear screen to white ***
SetClearColor(255,255,255)
Sync()
rem *** Load image ***
LoadImage(1,”ball.bmp”,1)
rem *** Create sprite ***
CreateSprite(1,1)
rem *** Resize sprite ***
SetSpriteSize(1,10,-1)
Sync()
rem *** Move sprite across the screen ***
for p = 1 to 100
 SetSpritePosition(1,p,p)
 Sync()
 Sleep(50)
next p
do
loop

Activity 6.7
No solution required.

Activity 6.8
Modified FirstSprite:

rem *** Sprite Depth ***

rem *** Change screen to white ***
SetClearColor(255,255,255)
Sync()

rem *** Load images ***
LoadImage(1,”ball.bmp”,1)
LoadImage(2,”poppy.bmp”,1)
rem *** Create ball sprite ***
CreateSprite(1,1)
rem *** Bring sprite forward ***
SetSpriteDepth(1,9)
SetSpriteSize(1,10,-1)
rem *** Create poppy sprite ***
CreateSprite(2,2)
SetSpriteSize(2,20,-1)
SetSpritePosition(2,50,50)
Sync()
rem *** Move sprite across the screen ***
for p = 1 to 100
 SetSpritePosition(1,p,p)
 Sync()
 Sleep(50)
next p
do
loop

The ball passes in front of the poppy rather than behind it.

Activity 6.9
Modified FirstSprite:

173 Hands On AGK BASIC: Resources - A First Look

rem *** Sprite Depth ***

rem *** Change screen to white ***
SetClearColor(255,255,255)
Sync()

rem *** Load images ***
LoadImage(1,”ball.bmp”,1)
LoadImage(2,”poppy.bmp”,1)
rem *** Create ball sprite ***
CreateSprite(1,1)
rem *** Bring sprite forward ***
SetSpriteDepth(1,9)
SetSpriteSize(1,10,-1)
rem *** Create poppy sprites ***
CreateSprite(2,2)
SetSpriteSize(2,20,-1)
SetSpritePosition(2,50,50)
CloneSprite(3,2)
SetSpritePosition(2,20,20)
rem *** Move cloned sprite to layer 8 ***
SetSpriteDepth(3,8)
Sync()
rem *** Move sprite across the screen ***
for p = 1 to 100
 SetSpritePosition(1,p,p)
 Sync()
 Sleep(50)
next p
do
loop

The ball passes under the new poppy and over the original
poppy.

Activity 6.10
Modified FirstSprite:

rem *** Sprite Hide ***

rem *** Change screen to white ***
SetClearColor(255,255,255)
Sync()
rem *** Load images ***
LoadImage(1,”ball.bmp”,1)
LoadImage(2,”poppy.bmp”,1)
rem *** Create ball sprite ***
CreateSprite(1,1)
rem *** Bring sprite forward ***
SetSpriteDepth(1,9)
SetSpriteSize(1,10,-1)
rem *** Create poppy sprites ***
CreateSprite(2,2)
SetSpriteSize(2,20,-1)
SetSpritePosition(2,50,50)
CloneSprite(3,2)
SetSpritePosition(2,20,20)
rem *** Move cloned sprite to layer 8 ***
SetSpriteDepth(3,8)
Sync()
rem *** Move sprite across the screen ***
for p = 1 to 100
 SetSpritePosition(1,p,p)
 Sync()
 Sleep(50)
next p
rem *** Hide poppies ***
SetSpriteVisible(2,0)
SetSpriteVisible(3,0)
Sync()
do
loop

Activity 6.11
The sound file J1to10.wav should play if everything is set up
properly.

The sound file voices the numbers 1 to 10 in Japanese.

Activity 6.12
The text should be in sync with the spoken words. Although
the speaker pauses, the sound plays continuously even while
the Sleep() statement is being executed.

Activity 6.13
Modified Sounds:

rem *** Play sound file ***
rem *** Load file ***
LoadSound(1,”J1to10.wav”)
rem *** Start playing file ***
PlaySound(1,100,1)
do
 Sync()
loop

Without the Sync()statement the file will play only once.

Activity 6.14
Code for Music:

rem *** Play music ***

rem *** Load music Files ***
LoadMusic(1,”TrackA.mp3”)
LoadMusic(2,”TrackB.mp3”)
LoadMusic(3,”TrackC.mp3”)
rem ** Play last track once ***
PlayMusic(3,0,3,3)
do
loop

Activity 6.15
The messages will appear briefly as the mouse button is
pressed and released.

Activity 6.16
The Pressed message remains visible while the mouse button
is down; the Released message remains visible while the
mouse button is up.

Activity 6.17
Modified PressedFlower:

Sync()
do
 if GetPointerState()=1
 PrintC(GetPointerX())
 PrintC(“ “)
 Print(GetPointerY())
 else
 Print(“Released”)
 endif
 Sync()
loop

Activity 6.18
Modified PressedFlower:

rem *** Load image ***
LoadImage(1,”poppy.bmp”)
rem *** Create sprite ***
CreateSprite(1,1)
SetSpritePosition(1,50,50)
SetSpriteSize(1,15,-1)
Sync()
do
 rem *** IF pointer pressed THEN ***
 if GetPointerPressed()=1
 rem *** Get its coordinates ***
 x# = GetPointerX()
 y# = GetPointerY()
 rem *** Check if coord over a sprite ***
 hit = GetSpriteHit(x#,y#)
 rem ***IF they are THEN hide sprite ***
 if hit <> 0
 SetSpriteVisible(1,0)
 endif
 endif
 Sync()
loop

Hands On AGK BASIC: Resources - A First Look 174

Activity 6.19
Modified UsingText:

rem *** Text Resources demo ***

rem *** Create empty string ***
CreateText(1,””)
rem *** Set resource attributes ***
SetTextPosition(1,15,30)
SetTextColor(1,250,250,0,255)
SetTextSize(1,10)
rem *** FOR 5 times DO ***
for c = 1 to 5
 rem *** Empty string ***
 text$ = “”
 for dots = 1 to 10
 rem *** Add underscore to string ***
 text$ = text$+”_”
 rem *** Place string in text resource ***
 SetTextString(1,text$)

 Sync()
 rem *** Wait 200 msecs ***
 Sleep(200)
 next dots
 rem *** Empty text resource ***
 SetTextString(1,””)
 Sync()
 rem *** Wait one second ***”
 Sleep(1000)
next c
rem *** Delete resource ***
DeleteText(1)
Sync()
do
loop

